ID:8258さん

3年後の目標や野望


1. ディレクター、CxOレベルでエンジニア組織ビルディング、 2. スマホ(エッジ)サイドでのAI学習、推論の実用化 3. ARによるリアルデータ収集

1. エンジニア組織のディレクターやCxOレベルで組織設計やチームビルディングに携わり、企画、開発、運用ともに強いテックカンパニーを築き上げる仕事をしたいと考えています。エンジニアの価値やソフトウェアの力が見直される一方で、エンジニア組織自体の変革が必要だと考えており、メンバーの多様性による柔軟性とロバスト性を持った組織作りを目指していきたいです。エンジニア採用やピープルマネジメント、テックリードレベルの仕事を経験してきているので、次のキャリアでは組織的にその上位に挑戦したいと考えています。 2. これまでAI(ML、DL)は学習・推論ともにクラウド上で実行される構成を取っていましたが、徐々にスマホやエッジ側でAI推論が導入され、UI/UXが改善されていっている傾向にあります。レイテンシとAIの効果を鑑みると、スマホサイドでのAI推論が広まるのは必然になっていくと予想されます。更にはプライバシーデータをAIで活用するため、スマホサイドでの学習も広まっていくと予想されます。スマホサイドでのAI活用によってアプリユーザのUI/UXを改善し、AIの実用化を促進したいと考えています。特にARでAIを活用するためには、スマホやデバイスでリアルタイムに推論する必要があります。 3. ARによってアプリやレジャーの質が変わると予想されますが、さらなるARの利点は「実世界のデータ」を収集するインターフェイスにすることができることです。TikTokやマインクラフトARはそこに先行していますが、データ量と活用方法がビジネスを左右する現代において、実世界のデータを得るインターフェイスをARプロダクトと組み合わせて開発していきたいと考えています。

年収評価シート

2020年/1年以内

データ基盤、検索基盤の開発、運用

自動運転のためのデータ収集基盤およびデータ検索基盤の企画、開発、運用、データ分析を担当し、1TB/日で増える非構造化データをデータパイプラインを通して分析、意味付けし、ストレージ、データベースに保存してユーザが検索、取得可能にしています。データパイプラインとバックエンドにはPythonとFastAPIを採用し、画像やポイントクラウド等のデータ整形や分析に一部ディープラーニングやOpenCVによる画像処理を使用しています。フロントエンドにはHTML+TypeScriptを使用しています。インフラでは大規模データをさばくためのローカルキャッシュやRedis Cacheの活用、負荷と時間帯を組み合わせたインフラのオートスケール、定期的な再起動による耐障害性の担保等を行っています。

2018年/2年以上

AI基盤、システム開発、スマホEdge AI、運用、ピープルマネジメント

- 社内でKubernetes/Istioを使ってAI基盤を自社開発し、運用しています。 - AI基盤はKubernetes CRDをベースに学習、推論のパイプラインを定義して実行することができるミドルウェアになっており、CRDによる動的なインフラ管理(GPU、ストレージ含む)、Istioによるトラフィック制御を行うことができます。 - 学習パイプラインはPythonでsklearn, tensorflow, pytorchを使って前処理、モデル定義、学習方法を定義することが可能になっています。 - 推論パイプラインはrestまたはgrpcをインターフェイスとして、tf servingやonnxを活用しています。Kubernetesに自動デプロイできる構造になっており、同時にIstioによるトラフィック制御(blue-green deployment)を可能にしています。 - 本基盤に各種モデル(画像、テキスト、構造化データ等々の分類、回帰)を配備し、顧客向け、社内向けで本番運用しています。 - 運用のためにSRE業務を行い、Linuxカーネルレベルやtensorflowのソースコードレベルでのトラブルシューティングを実施。 - ディープラーニングでユーザ向けに2000rps程度のリクエストを処理。 - スマホ向けEdge AIによるリアルタイム推論。 - スマホ向けEdge AIによるデバイスサイド学習。 - 16名のチームマネジメント - シニアエンジニアおよびエンジニアリングマネジャー採用 - これらの経験を技術書として執筆し、日本国内では発売済み。同内容でPyCon JP、デブサミ、DevOps Days等、各種イベントに登壇。

2019年/2年以内

Neural architecture searchの自作とマルチモーダルDLモデル開発

- Neural architecture searchを用いて画像データとテキストデータを組み合わせたマルチモーダル学習を自動生成。 - マニュアルでマルチモーダルDLモデル(Kerasベース)のライブラリを開発。 - Neural architecture searchによるマルチモーダルDLモデル(画像、テキスト)探索ライブラリを開発。 - 両モデルとも特定業務で実用化。

2019年/2年以内

多国籍エンジニアチームのマネジメント

- 多国籍エンジニアで構成されたチームのマネジメントを日本語、英語で実施。 - メンバーは16名、ジュニア:シニア=2:1 - Kubernetesで構築されたMLシステムを運用し、シニアメンバーに運用ノウハウを伝授しつつ、ジュニアメンバーの技術力向上を実施。 - シニア層、マネジメント層のエンジニア採用。5名のシニアエンジニア採用と、2名のエンジニアリングマネージャー登用に成功。

2010年/2年以上

ユーザー向けクラウドアーキテクト

クラウドサービスをユーザーに拡販するにあたり、POCとして要件を満たすアーキテクチャ設計、技術検証を行いました。担当したPOCの件数は30程度になります。 大きな流れとして、ユーザー要件をヒアリングし、クラウドで実現するためのアーキテクチャを描き、技術的に立証した上で、クラウドの予想費用を算出するというものです。 具体例として、ある輸送機メーカーの販社管理システムを担当した際は、全国の販社にリアルタイムに製品情報を提示するためのパフォーマンス設計が必要でした。そのためにデモシステムを構築し、パフォーマンスチューニングを行いました。特にサーバ台数とパフォーマンスの関係を計測し、顧客の求める性能を実現する設計を行うことで、実現性を評価されて受注しました。クラウドインフラで年間数千万円となる売り上げとなります。

2010年/2年以上

クラウドビジネス立ち上げ

一部上場企業でクラウドビジネスの立ち上げを行いました。Windowsを基盤としたIaaSであり、データセンターは日本国内です。私の担当はサービス全体の要件定義支援と、バックエンド機能の開発です。担当したバックエンド機能にはユーザー管理、課金システム、基盤監視通報があります。 ユーザー管理システム開発ではプロマネの立場で6人のチームをリードしました。システムにはSalesforce.comを利用し、社内向けユーザー管理システムとユーザー向け契約情報照会システムを開発しました。 課金システムではVisual StudioでC#を用いてコーディングしました。csvで取得する利用ログをMS SQL Serverに取り込んで計算し、ユーザー向け契約情報照会システムに表示します。 基盤監視通報システムはZabbixとbashで開発しました。基盤障害時に運用チームにメール通報するものでしたが、のちにユーザー向けの通報も行うようになりました。 すべて含めて開発期間は一年程度でしたが、リリース以降は運用、エンハンス、セールス支援に従事しました。

2016年/2年以内

データ分析基盤のパフォーマンスチューニング

データ分析基盤のパフォーマンスチューニングを行いました。対象のデータ分析基盤はRHEL6を使用し、サーバ10台で構成されていました。5台がhadoop、5台がインメモリのデータ分析処理基盤です。 顧客はデータ分析基盤でレポートを生成し、ウェブ画面に表示する社内システムを使用していましたが、パフォーマンス遅延を訴えていました。顧客オンサイトで調査した結果、アクセス人数は数百人を超え、時間帯によってアクセス数が上下するものでしたが、遅延はアクセス数と必ずしも比例していないことがわかりました。 本番環境でレポート表示の所要時間を計測、調査したところ、遅延は一部のレポートで頻繁することがわかりました。dstatによりリソース使用を計測した結果、cpuとメモリが推測値を超えてほぼ使い切られていることがわかりました。RHEL6のカーネルを調査して、transparent huge pages(thp)が有効になっており、メモリのデフラグにcpuが浪費され、パフォーマンス劣化を招いていることがわかりました。thpはhadoopやデータベースでは知られたパフォーマンス劣化原因なのですが、使用していたデータ分析基盤では初の事例でした。thpを無効化することでcpu、メモリの使用量を抑えることに成功しました。 加えて、別の観点では出力しているレポートに問題がありました。遅延の発生しているレポートでは中間が大量に生成されていることがわかりました。そこでレポートに必要な中間テーブルをバッチで生成するプログラムを用意し、常にそのテーブルを使用するよう、レポートのロジックを変更しました。 これらの対処によりレポート表示遅延を回避することができました。

2016年/2年以内

ビジネスデータ分析

ビジネスデータ分析にディープラーニングを適用し、従来より良い予測モデルを作成しました。 顧客はあるb2cビジネスを行っている企業で、エンドユーザーの傾向分析が要件でした。従来から実績のある統計ソフトウェアを用いていたのですが、トップダウンでディープラーニングを導入することになりました。言語はpythonで、ディープラーニングのフレームワークとしてkeras、バックエンドにtensorflowを利用し、開発環境はjupyter notebookを使いました。 プログラミング担当は私一人で、加えてプロマネと顧客のカウンターが付きました。 データを収集し空値やエラー値のクレンジング後、数値の標準化を行い、ニューラルネットワークモデルを形成しました。GridSearchCVで最適なパラメータの探索後、微調整を行ってaccuracy、loss、roc aucのより良いモデルを選択して実運用に適用しました。 従来のモデルよりaccuracyで10%、lossで0.5、roc aucで0.1の改善を実現しました。

2016年/半年以内

クラウド上でのデータ分析ソフトウェアのインストール自動化

海外のチームと連携し、AWS上でデータ分析ソフトウェアの構築を自動化するプログラムをcloud formationとansibleで実装しました。 チームメンバーは10名で、各人は欧米諸国からリモートで参加しました。コミュニケーションはすべて英語です。 データ分析ソフトウェアはhadoopと分析基盤からなり、単体構成と複数台構成が可能です。OSはRHELになります。 データ分析ソフトウェアの構築は、通常であればマニュアルでインストールするのですが、インストール完了に一週間程度を要するものでした。一週間の作業中にミスが発生して構築期間延長、品質低下の原因となっていたこともあり、クラウド上で手軽に正確に構築するプログラムを作成しました。 サーバはec2を10台、ネットワークはvpcを使い、awsの構築はcloud formationで自動化しました。ここでは100行程度のjsonを書いています。cloud formationで構築されたサーバにansibleとplaybookでデータ分析ソフトウェアをインストールする流れになります。playbookは30ファイルのymlで構成し、インストールの各フェーズ(osの設定、hadoopのインストール、各サーバへのデータ分析ソフトウェアインストール、構成等々)でファイルを分けて作りました。 この取り組みにより、データ分析ソフトウェアの構築が一週間から1日に短縮されました。

2015年/1年以内

Java rest api開発プロジェクト

Javaを用いたRest apiアプリケーションの開発プロジェクトでプロダクトオーナーとして顧客の要件調整を行いました。開発はスクラムで10人のチームで行い、プロダクトオーナーは私一人、スクラムマスターが一人、残りが開発という編成です。 プロジェクトでは顧客がウェブ販売を行うためのシステムを開発しました。rest apiアプリケーションはウェブサイトと基幹システムを繋ぐ目的で、合計20個のアプリケーションを開発しました。 それぞれの仕様を定義するため、私は顧客のストックホルダーと日々対面し、ビジネス要件を技術要件に翻訳する仕事を行いました。ストックホルダーが多数いたため、各ストックホルダー間の意見を調整しました。隔週で開発した機能のお披露目を行うことでフィードバックを得て修正するサイクルを回しました。 結果、従来であれば一年かかるウェブ販売システムの開発を3ヶ月でリリースすることに成功しました。

マネージメント能力

システム、エンジニア、コミュニティのマネジメントを行っています。
・システム:MLシステムが安定して外部から接続可能かつ推論結果に異常がない状態を保ちます。 ・エンジニア:エンジニアが開発および運用に集中し、現状より成長できる状態を維持します。 ・コミュニティ:MLOpsコミュニティの企画運営を行い、国内の機械学習実用化を促進しています。
・システム:運用手順のマニュアル化。ジュニア育成には、ジュニアをシャドー運用させてトラブルシューティング手順をシニアメンバーと実地で比較する。 ・エンジニア:開発は任せつつ、レビュー(とくに非機能要件)で方向付けや修正を行う。人事評価およびフィードバックを通してメンバーの成長を促しつつ、長期的な人材戦略から採用活動や対外PRに貢献する。 ・コミュニティ:各種イベントの企画、登壇者調整、イベント中の司会および盛り上げを行っています。MLOpsコミュニティ以外でも自社PRのためのミートアップ開催や、外部ミートアップでの登壇も積極的に実行。

アピール項目


アウトプット

GitHub アカウント
あり
Qiita アカウント
あり
Zenn アカウント
未入力です
Speaker Deck アカウント
未入力です
SlideShare アカウント
あり
特にアピールしたいアウトプット
あり

今後、身につけなければいけないと思っている技術は何ですか?

・スマホの低レイヤー ・UI/UXデザイン

あなたが一番パフォーマンスを出せるのはどんな環境ですか?

姿勢を変えながら作業ができる椅子や机で仕事をすること

キャラクター

直近で一番やりたいこと
組織を作りたい
好きなスタイル
好きな規模
水とプログラミングどっちが大事?
自信を持って人より秀でていると言える点
問題解決力 / 責任感 / 巻き込み力
スキルのタイプ
得意なフェーズ
会社を選ぶ一番の基準
好きなプロダクトがある
やりたくない分野
SI / 金融
その他の特徴
使用言語にはこだわらない / 新しい技術はとりあえず試す / 3年以内には海外で働きたい / 勉強会でLTをよくする / 趣味は仕事 / 多職種のバックグラウンドがある
その他のやりたいこと・やりたくないこと
未入力です

やりたい事

手を動かして設計してコードを書きたい
絶対やりたくない
あまりやりたくない
別に普通
やりたい
絶対やりたい
価値あるプロダクトを作り成長させたい
絶対やりたくない
あまりやりたくない
別に普通
やりたい
絶対やりたい
学び続けて技術力でプロダクトに貢献したい
絶対やりたくない
あまりやりたくない
別に普通
やりたい
絶対やりたい
意義があることや社会に貢献できる仕事がしたい
絶対やりたくない
あまりやりたくない
別に普通
やりたい
絶対やりたい
人や計画の調整・マネジメントをしたい
絶対やりたくない
あまりやりたくない
別に普通
やりたい
絶対やりたい
レガシーなシステムの保守・運用・改善をしたい
絶対やりたくない
あまりやりたくない
別に普通
やりたい
絶対やりたい
企画や仕様を考えるところから関わりたい
絶対やりたくない
あまりやりたくない
別に普通
やりたい
絶対やりたい
業務効率を改善して一緒に働く人のためになりたい
絶対やりたくない
あまりやりたくない
別に普通
やりたい
絶対やりたい
全社横断的な共通基盤作りや強化をしたい
絶対やりたくない
あまりやりたくない
別に普通
やりたい
絶対やりたい
組織や文化を作る・成長させる仕事をしたい
絶対やりたくない
あまりやりたくない
別に普通
やりたい
絶対やりたい

基本プロフィール

年齢
今年で40代前半
好きな Text Editor
vscode
希望勤務地
埼玉県 / 千葉県 / 東京都 / 神奈川県 / 愛知県 / 京都府 / 大阪府 / 兵庫県 / 福岡県 / その他地域 / リモート勤務
集まる必要性がない場合は基本リモートが許可される環境が必要
希望年収
1200万円
転職ドラフトに参加して
企業から指名を受け取ろう!
会員登録をして転職ドラフトに参加すると、参加企業から年収付きの指名を受け取ることができるようになります。
会員登録する
ご意見箱

要望、不具合報告、使いづらい点や感想など、お気軽にお寄せください。
いただいたご意見は、今後のサービス向上に活用させていただきます。

なお、このフォームは受付専用のため、返信を行っておりません。
返信を希望する場合はお問い合わせよりご連絡ください。

  • {{error}}
SIGN UPSIGN IN


転職ドラフトを友人や同僚に薦める可能性はどのくらいありますか?